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For a combination of theoretical and phenomenological reasons, it is argued that the
conventional SEA coupling loss factor is not the most appropriate form of coefficient for
relating energy transfer between SEA subsystems to their vibrational states. An alternative
‘power transfer coefficient’ is suggested and an experimental method for its determination,
which obviates the need to measure input powers, is proposed.
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1. INTRODUCTION

The coupling loss factor conventionally employed in Statistical Energy Analysis is defined
by analogy with the dissipation loss factor, thus: time-average power dissipated by
subsystem i= hivEi ; time-average power transferred by subsystem i to subsystem
j= hijvEi ; time-average power transferred by subsystem j to subsystem i= hjivEj . Here
Ei represents the total time-average energy stored in subsystem i in time-stationary
vibration and v is the centre frequency of an analysis band of width Dv.

This definition produces a non-symmetric loss factor matrix

K L K L K Ls
i$ 1

h1i + h1 −h21 · −hk1 E1 P1

G G G G G G
G G G G G G
G G G G G G−h1 s

i$ 2

h2i + h2 · E2 P2G G G G G G
G G G G G G

· · · ·G G G G G G
v

· · ·

=

·

, (1)

G G G G G G
G G G G G G· · · ·
G G G G G G
G G G G G G−h1k · · s

i$ k

hki + hk Ek Pkk l k l k l

0022–460X/98/270261+07 $30.00/0 7 1998 Academic Press



. . 262

in which Pi represents time-average input power to subsystem i. Introduction of the
so-called SEA reciprocity relation, h12n1 = h21n2, allows the matrix to be written in a
symmetric form as
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where n denotes modal density, and Ei /ni is the average energy per mode (modal energy)
of subsystem i times the analysis bandwidth Dv.

2. AN ALTERNATIVE DEFINITION

On the basis of equation (2) alone one can make out a case for defining a new set of
coefficients linking transferred and stored energy, namely

Mij = hijvni = hjivnj =Mji . (3)

These have previously been termed ‘power transfer coefficients’ [1] and ‘modal coupling
factors’ [2]. The analogous ‘power dissipation coefficients’ are Mi = hivni . The latter are
physically significant since they represent the degree of modal overlap of the uncoupled
modes of each subsystem. The modal overlap factor has great significance in SEA because
it influences ensemble response statistics and also features in a recently developed indicator
of strength-of-coupling between subsystems [3, 4]. If Mij /(MiMj )1/2 is sufficiently large,
the coupling may be said to be strong and the actual value of Mij then falls below the
value corresponding to the travelling wave power transmission coefficient which is
conventionally employed in SEA analysis.

A justification for the use of Mij rather than hij and hji is that the former depends only
upon the linear dimensions of the interface between subsystems i and j, whereas the
coupling loss factors depend, in addition, upon the other dimensions of the subsystems,
as shown by the comparison in Table 1, in which tab is the diffuse field vibrational wave
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power transmission coefficient of the interface and c is the wave group speed of
subsystem a.

The power transmitted through an interface is proportional to the product of the
physical extent of the interface and the intensity of vibrational waves approaching the
interface. The intensity is equal to the product of the energy density of the waves and their
group velocity. The energy density is proportional to the modal energy [1]. It is therefore
illogical to relate the transmitted power to the total energy of a subsystem since, for a given
value of energy density, the total energy varies in proportion to the spatial extent (length,
area or volume) of the subsystem, whereas the transmitted power is unaltered. The
awkward consequence of employing the total energy is that the associated coupling loss
factor depends upon all the linear dimensions of the subsystem, and not just on the relevant
quantity, namely the extent of the interface, as shown by Table 1. One consequence of
employing Mij is that the so-called ‘Smith criterion’ of coupling strength may be expressed
as Mij�Mi and Mj . (However, the general validity of the criterion has been questioned
[3, 4].)

3. EXPERIMENTAL DETERMINATION OF POWER COEFFICIENTS

Although it may be argued that the use of power transfer and dissipation coefficients
rather than coupling and dissipation loss factors is logical from a theoretical point of view,
it appears to present difficulties in terms of application of the widely used power injection
method for the experimental determination of coupling and dissipation power parameters,
via inversion of the subsystem energy matrix. This is because the modal energies of
structural subsystems cannot be directly determined from measured quantities, whereas the
total energies can be estimated from vibration velocity response measurements, made at
a number of sampling points distributed over the spatial extent of a subsystem, together
with an estimate of the associated effective mass: E=mei�n2�, where the brackets indicate
spatial average.

However, there is, in principle, a way to overcome this problem which brings with it
the considerable advantage of avoiding the need to measure input power in the power
injection method. The time-average input power from a harmonic point force acting on
a distributed elastic subsystem is given in terms of the velocity response at the driving
point by

Pin = 1
2 Re {F	 ñ*}, (4)

T 1

Power transfer coefficients and equivalent coupling loss factors of spatially
uniform subsystems

Mab hab

One-dimensional subsystems of tab /2p tabcga /2vLa

lengths La and Lb

Two-dimensional plane subsystems (kaL)tab /2p2 tabLcga /pvSa

of areas Sa and Sb and interface length L

Three-dimensional subsystems of (k2
aS)tab /8p2 tabScga /4vVa

volumes Va and Vb and interface area S
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in which the tilde indicates ‘complex amplitude’ and the asterisk indicates ‘complex
conjugate’. The force and velocity are related through the complex point mobility Y	 . In
spectral terms

Pin (v)=Sff (v) Re {Y	 (v)}=Snn (v) Re {1/Y	 (v)}=[Snn (v)/=Y	 (v)=2] Re {Y	 (v)},

(5a–c)

where Sff and Snn are the autospectral densities of force and response velocity at the driving
point.

The power input in a frequency band Dv is therefore given by

gDv

Pin (v) dv=gDv

Sff (v) Re {Y	 (v)} dv=gDv

[Snn (v)/=Y	 (v)=2] Re {Y	 (v)} dv.

In many practical measurements, power is injected by means of an electrodynamic
vibration generator (shaker), supplied by a constant output voltage amplifier. It may also
be inferred from the Fourier components of transient force and velocity generated at the
point of excitation by a hammer. In the case of continuous excitation by a shaker, neither
the force nor the resulting velocity autospectra are uniform (independent of frequency)
because of interaction between the shaker and the excited structure. However, experience
shows that, in practice, the force spectrum generated by a shaker is much more uniform
than the velocity spectrum, and the input power spectrum exhibits peaks at the resonance
frequencies of the structure at which Re {Y	 (v)}�Im {Y	 (v)} and =Y	 (v)=2 1 [Re {Y	 (v)}]2.
Hence, the dominant contributions to the spectra of both power and velocity are associated
with peaks in the Re {Y	 (v)}, and equation (5c) may be written approximately as

gDv

Pin (v) dv1$gDv

Snn (v) dv%$(1/Dv) gDv

Re {Y	 (v)} dv%
−1

. (6)

The frequency-average value of the real part of the mobility of a spatially uniform structure
of total mass M is given by �Re {Y	 (v)}�v = pn(v)/2M, where n(v) is the corresponding
frequency-average modal density, provided that the averaging band includes a number of
modal resonance frequencies [5].

Hence, for such structures equation (6) may be written as

(Pin )Dv 1 (n2
in)Dv2M/pn(v). (7)

In the application of the power injection method, a number of ‘randomly distributed’
excitation points is selected. On the basis of the hypothesis that equation (7) holds for
non-uniform structures in terms of an (unknown) effective mass, one can write

�Pin�x 1 �n2
in�x2me /pn, (8)

in which the explicit frequency dependence has been dropped, � �x indicates ‘space average’
and an effective mass which is related to the choice of excitation points replaces the actual
mass of the substructure.
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The SEA power balance equations (1) may now be written as
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in which �n2
e � in the average mean square velocity at the excitation points.

The subsystem energies may be written as E=me�n2�, where �n2� is the measured
space-average mean square response velocity and me is the effective mass associated with
the response measurements (which may not be the same as that associated with the power
input points). On the assumption, however, that these two effective masses may be equated,
one obtains:

K Ls
i$ 1

M1i +M1 −(me2/me1)(n1/n2)M12 −(mek /me1)(n1/nk )M1kG G
G G
G G

−(me1/me2)(n2/n1)M12 s
i$ 2

M2i +M2 ·G G
G G

· · ·G G
G G
G G−(me1/mek )(nk /n1)M1k · s

i$ k

Mik +M1

k l

�n2
1� �ne2

1�
�n2

2� �ne2
2�G

G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

×
·

=(2/p)
·

. (10)

�n2
k � �ne2

k �



. . 266

These equations contain two sets of directly measured response autospectra and require
no measurement of input power, which is one of the major sources of error in SEA
experiments.

The elements of the M matrix can be determined in the usual manner by injecting power
sequentially into each subsystem and, in each case, measuring space-average input and
response velocities on all subsystems. Each power transfer coefficient Mij can be obtained
from the product of the values of the two off-diagonal elements in which it appears. The
power dissipation coefficients Mi can then be obtained from the values of the diagonal
elements of equation (10). No estimates of subsystem effective masses or modal densities
are required: the former is a common source of uncertainty in experimental determination
of SEA parameters. The results for a two-subsystem model are presented explicitly in the
Appendix.

This formulation has one practical disadvantage compared with the measurement of
input force and response velocity, namely that velocities at excitation and response points
do not satisfy the principle of vibrational reciprocity. Hence, this method requires twice
as many measurements as that based upon transfer mobility measurement. On the other
hand, the equations in terms of response velocities are generally better conditioned than
those in terms of total energies, because power flow is proportional to difference between
modal energies, not total energies.

4. CONCLUSION

The concept of coupling loss factor, as employed in SEA, is criticized as being dependent
upon physical quantities which do not directly influence the transmission of vibrational
power from one subsystem to another. An alternative concept, the ‘power transfer
coefficient’, which takes a form similar to the modal overlap factor, is proposed. It is
suggested how this quantity may be determined by applying a variant of the conventional
power injection method. The proposed method obviates the need to measure input power
or to estimate subsystem effective masses and modal densities.
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APPENDIX: TWO-SUBSYSTEM MODEL

The following approximate solutions of equations (10) for a two-subsystem model are
based upon the assumption that �n2

2�2/�n2
1�2��n2

2�1/�n2
1�1, which will be the case except

when the system is close to a state of equipartition modal energy (very strong coupling):

M12 1K−1[(�n2
1�2/�n2

2�2)/(�ne2
1�/�n2

1�1)], (A1)
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K1 [(�n2
1�2/�ne2

2�)/(�n2
2�1/�ne2

1�]1/2 = (me2/me1)(n1/n2), (A2)

M1 1 (2/p)(�ne2
1�/�n2

1�1)−M12, M2 1 (2/p)(�ne2
2�/�n2

2�2)−M12. (A3, A4)

Here �n2
i �j indicates the spatial-average mean square response velocity of subsystem i when

external excitation is applied to subsystem j.


